Microbeads display of proteins using emulsion PCR and cell-free protein synthesis.
نویسندگان
چکیده
We developed a method for coupling protein to its coding DNA on magnetic microbeads using emulsion PCR and cell-free protein synthesis in emulsion. A PCR mixture containing streptavidin-coated microbeads was compartmentalized by water-in-oil (w/o) emulsion with estimated 0.5 template molecules per droplet. The template molecules were amplified and immobilized on beads via bead-linked reverse primers and biotinylated forward primers. After amplification, the templates were sequentially labeled with streptavidin and biotinylated anti-glutathione S-transferase (GST) antibody. The pool of beads was then subjected to cell-free protein synthesis compartmentalized in another w/o emulsion, in which templates were coupled to their coding proteins. We mixed two types of DNA templates of Histidine6 tag (His6)-fused and FLAG tag-fused GST in a ratio of 1:1,000 (His6: FLAG) for use as a model DNA library. After incubation with fluorescein isothiocyanate (FITC)-labeled anti-His6 (C-term) antibody, the beads with the His6 gene were enriched 917-fold in a single-round screening by using flow cytometry. A library with a theoretical diversity of 10(6) was constructed by randomizing the middle four residues of the His6 tag. After a two-round screening, the randomized sequences were substantially converged to peptide-encoding sequences recognized by the anti-His6 antibody.
منابع مشابه
Microbial Cell Surface Display: Its Medical and Environmental Applications
Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them tofunctional components of cells which are exposed to the environment of cells. This strategy can be carriedout using different surface proteins of cells as anchoring motifs and different proteins from different sourcesas a passenger protein. It is a promising strategy...
متن کاملCell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates.
Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free ex...
متن کاملUltra-High-Throughput Screening of an In Vitro-Synthesized Horseradish Peroxidase Displayed on Microbeads Using Cell Sorter
The C1a isoenzyme of horseradish peroxidase (HRP) is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active H...
متن کاملHigh-performance single cell genetic analysis using microfluidic emulsion generator arrays.
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Micr...
متن کاملIntegration of a reconstituted cell-free protein-synthesis system on a glass microchip.
Recently, a cell-free protein synthesis system reconstituted solely from essential elements of the Escherichia coli translation system, termed protein synthesis using recombinant elements (PURE), has been widely used in synthetic biology to analyze fundamental life systems. Here, the system was integrated on a glass microchip system to construct a simple protein synthesis system. GFP template D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biotechnology progress
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2008